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High-order synchronization, transitions, and competition among Arnold tongues
in a rotator under harmonic forcing
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We consider a rotator whose equation of motion for the angle 6 consists of the zeroth and first Fourier
modes. Numerical analysis based on the trailing of saddle-node bifurcations is used to locate the n:1 Arnold
tongues where synchronization occurs. Several of them are wide enough for high-order synchronization to be
seen in passive observations. By sweeping the system parameters within a certain range, we find that the

stronger the dependence of 6 on 6, the wider the regions of synchronization. Use of a synchronization index
reveals a vast number of very narrow n:m Arnold tongues. A competition phenomenon among the tongues is
observed, in that they “push” and “squeeze” one another: as some tongues widen, others narrow. Two mecha-
nisms for transitions between different n:m synchronization states are considered: slow variation of the driving
frequency, and the influence of low-frequency noise on the rotator.
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I. INTRODUCTION

When two or more oscillatory processes are coupled,
there exists the possibility of their becoming synchronized.
Where their autonomous frequencies are different but close,
synchronization is understood as the adjustment of those fre-
quencies as a result of coupling. Even when such systems
operate on different time scales, synchronization may still
appear as an adjustment of their frequencies to an integer
ratio, an effect known as high-order synchronization or syn-
chronization of order n:m.

Synchronization of order n:m has been extensively stud-
ied, both experimentally and theoretically (see Ref. [1] for a
review). For instance, Simonet and co-workers [2] investi-
gated a ruby nuclear magnetic resonance laser with delayed
feedback. The undriven laser exhibited periodic oscillations
of light intensity at a frequency v,=40 Hz. An external pe-
riodic voltage, either sinusoidal or square wave, was then
added in the feedback loop. In both cases, synchronizations
of different order n:m were observed. Another example is
the electrical rotator consisting of a Josephson junction,
shunted by a capacitor, and fed with a constant external cur-
rent. Experiments show that this system can be synchronized
when a periodic driving current is applied, or where two
junctions are coupled [3]. There are many additional ex-
amples.

Synchronization has also been observed extensively in bi-
ology. One example is the cardiorespiratory system, consid-
ered in the pioneering works by Kenner et al., Hildebrandt,
and Raschke [4]. Schiifer and co-workers [5] proposed the
synchrogram as a tool to visualize cardiorespiratory synchro-
nization. When plotting the instantaneous respiratory phase
at the occurrence of a heartbeat versus time, they found hori-
zontally striped plots for some subjects, thereby revealing
n: 1 synchronization between heart and respiration. Toledo et
al. [6] showed that the probability of such synchronization
happening by chance was extremely small. In measurements
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on anesthetized rats, Stefanovska et al. [7] observed lengthy
synchronization epochs, and transitions from one ratio to an-
other. They suggested that such transitions might be useful in
monitoring depth of anesthesia.

There are several nonlinear models yielding n:m synchro-
nization. Arnold proposed [8] a map of the circle into itself,
obtaining synchronization “tongues” and calculating their
widths in the approximation of small coupling. In fact, any
orientation-preserving homeomorphism /#:S'—S' of the
circle into itself presents such regions of n:m locking [9,10].
Integrate-and-fire models provide several examples of Ar-
nold tongues [11]. High-order synchronization regions were
also obtained by Glass and Sun [12] for an impulse-driven
Poincaré oscillator. Schilder and Peckham [13] treated Ar-
nold tongues numerically, and they obtained tongues for the
system of two coupled Van der Pol oscillators; here the
tongues are quite narrow, so that the probability of locking in
a real, noisy system would therefore be very small. Simonet
and co-workers proposed a model [2] that reproduced the
synchronizations observed in the laser. For cardiorespiratory
synchronization, Kotani et al. [14] developed a model, based
on those of DeBoer et al. [15] and Seidel and Herzel [16],
which is supported on both physiological and mathematical
principles. The model involves a somewhat complicated sys-
tem consisting of several oscillators and interactions, and
includes some nonanalytic parts (integrate-and-fire). Because
of technical difficulties encountered when tackling nonlinear
models, the deep mechanisms through which synchroniza-
tion takes place are not yet understood in general, so that
there is still no way of predicting which equations, and
which values of their parameters, will or will not yield syn-
chronization.

The present paper has two main purposes. First we
present a systematic study of high-order synchronization in a
particularly simple system, a rotator under harmonic forcing,
for which we can establish the roles played by each of its
parameters in synchronization. Although we study a specific
system, and although the deep mechanisms responsible for
synchronization are not unveiled in this paper, we report be-
low two results that we believe will be useful in the quest for
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those deep mechanisms: we show that the main Arnold

tongues are wider when 6 depends more strongly on 6; and
that competition occurs between synchronization regions.
Our second purpose is to discuss and explore two possible
mechanisms giving rise to an extensively observed phenom-
enon: transitions between the different n:m synchronization
ratios. The mechanisms considered here arise from time vari-
ability. We will also discuss briefly why time variability hin-
ders the analysis of synchronization in experimental data.

The paper is organized as follows. In Sec. II we introduce
the simple rotator whose synchronization properties are to be
considered. Section III discusses how its regions of n:1 and
n:m synchronization are identified and reports the main re-
sults obtained under stationary conditions, including the ob-
servation of competition between the tongues. Time variabil-
ity and its effect on transitions between different synchro-
nization states is discussed in Sec. IV. Section V summarizes
the main conclusions.

II. THE SYSTEM

The generic equation for the angle 6 of a rotator without

external interaction is 6=f(6), where f is a 2r-periodic func-
tion [17,18]. Therefore, such a system can be studied system-
atically by considering functions f up to a certain number k
of harmonics, and allowing a bigger number k+ 1 of harmon-
ics at the next stage of the study. In this paper, we start the
study for a function consisting of the zero harmonic (the
“constant force,” thanks to which a rotator has the features of
a self-sustained oscillator) and the first harmonic. By means
of a translation in the value of 6, it can always be written as

6=ay+a, cos 6, (1)

with @y and a; constants, where Eq. (1) is an Adler-type
equation [19]. We assume a,>|a,| so that, in the absence of
interaction [nothing is added to Eq. (1)], the angle 6 continu-
ously increases. For ay much bigger than a;, 6 increases at an

almost constant rate. For a; close to a,, however, 6 varies
strongly with 6. We show that Eq. (1) can synchronize to an
external forcing, exhibiting a wide variety of Arnold tongues,
and we discuss the processes that may be responsible for
transitions between different n:m synchronization ratios.

The equations for the overdamped pendulum, and the
overdamped Josephson junction, are of just this type. The
equation of motion of a pendulum driven by a constant
torque K is described by

\P+7\P+Kzsin‘1’=7, (2)

where « is the frequency of small oscillations, y>0 is the
damping constant, and 7 is the moment of inertia.

In a resistively shunted Josephson junction, the current is
a sum of three contributions: a superconducting current
1. sin W, a current V/R through the resistance, and a capaci-

tance current VC. The parameter /. is called the critical su-
percurrent of the junction. The relationship between the po-
tential V and the “angle” W is given by the Josephson
formula
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current /
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Equations (2) and (4) coincide. In the overdamped limit,
when the term with the second derivative can be neglect-
ed—in the case of the Josephson junction, this means that
there is no capacitor in the circuit—these equations reduce to
the one that we study in this paper, Eq. (1). Thus the results
that we obtain below will be applicable to the overdamped
pendulum and the overdamped Josephson junction.

As Eq. (1) is analytically integrable, we find that the fre-
quency for the noninteracting rotator is

1 5
vy = ;Tva(z)— a%. (5)

We now consider the effect of an external harmonic force on
the rotator

6=ay+a, cos 0+ B sin(wr), (6)

with B=0. This equation applies to a number of situations in
nature. In the case of a Josephson junction, Eq. (6) describes
when the system is fed with a continuous intensity plus a
harmonic one. In relation to cardiorespiratory synchroniza-
tion, Eq. (6) can be regarded as a very simple model in
which the rotator Eq. (1) models the heart, and the addition
of the harmonic component models its interaction with res-
piration [20,21]. Equation (6) has been studied [1] for large
amplitudes B of the harmonic component. However, we are
interested here in the Arnold tongues down to very small
driving amplitude, in order that we can also apply the results
to the weakly coupled rotator.

Equation (6) defines a circle map with the following pre-
scription: let us call #; the time at which the external driving
is at its ith maximum. We define 6,=6(t;). As Eq. (6) is a
first-order differential equation and we have an initial condi-
tion 6(#;), we could integrate to obtain 6(r). Let #;,, be the
time at which the external driving is at its i+1 maximum,
and let 6,,=6(t,.,). That is how we have the map A:S!
—S! defined as 6,,=h(6;). We would therefore expect the
existence of Arnold tongues [9,10].

III. SYNCHRONIZATION AND ARNOLD TONGUES

A. Synchronization of a rotator driven
by an external periodic force

Now we introduce the concept of n:m synchronization
that will be used in this work. Suppose we have a rotator
driven by a Tp-periodic external action 6=f(6)+g(r) with
f(0+2m)=f(0) V 0, g(t+Tg)=g(t) V t. Then, any T-per-
iodic motion of 6, #(t+T)=6(t)mod 2, must have a period
that is a multiple of the driving period. Let m &N be such
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that T=mTy. Let n € NU{0} be the number of times that the

angle crosses #=0 mod 277 with >0 in one of its periods
T=mTy. We then say that the rotator is n:m synchronized to
the external driving g. The synchrogram consists then of
horizonal lines, albeit not necessarily equally spaced. Note
that any periodic motion of the forced rotator automatically
implies n:m locking to the external action for some n and m.

B. Saddle-node bifurcation

Putting the above definition of n:m synchronization into
mathematical terms, we say that the rotator gets synchro-
nized n:m to the external force if there exists a stable root
(zero) for the function

By (6) = H7(6) = 277 — 6, )

where A" stands for the return map 4 composed with itself m
times. In general, if 4,,, has two or more roots, there is at
least a stable fixed point. Regardless of the initial condition,
the trajectory is attracted toward a stable fixed point. The
function #,,, depends, of course, on the parameters of Eq.
(6), so it changes as we vary the external driving frequency
w. At the moment of transition from two zeros to no zero,
there is only one root, on which #,,, is tangent to the hori-
zontal axis, this single zero is a half-stable fixed point. At
this moment, a saddle-node bifurcation takes place.

Obtaining the borders of the Arnold tongues therefore in-
volves retrieving the two driving frequencies at which the
saddle-node bifurcation takes place for different values of the
driving amplitude B. For this purpose a continuation soft-
ware was written in C. The first step was to obtain the
Poincaré return map #, so the interval [0,27] was divided
into many points. At each of these, the function 4" was ob-
tained by integration of the differential equation (6) with the
fourth-order Runge-Kutta method, thereby obtaining £,,,(6)
=h"(6)-2mn— 6. For given values of B and w, we know that
we are inside the tongue if £,,, has two or more roots, and
outside if #,,, has no zeros. Hence, for a given value of B, we
can trace the left and right values of @ at which the saddle-
node bifurcation takes place, up to the desired precision. We
start with zero driving amplitude B=0; for this value the
tongue consists of only one point w=maw,/n—this will not
be forced when we study the bifurcations in the “flexible”
way for very narrow tongues, see Sec. III F. For the next
value of the coupling (positive but close to 0), we start from
w=muwy/n and look for the two bifurcation points. Then, for
sequentially increasing values of B, we first guess approxi-
mately the bifurcation points on the left and right boundaries
by linear extrapolation from the two former bifurcation fre-
quencies in each case. Starting from this guessed value, the
program looks for the correct bifurcation point. In some
tongues and for small values of B, the synchronization region
is so narrow that the program cannot retrieve the bifurcation
points. In such cases, the program skips this value of B, goes
to the next B, and sets the starting point (the “guessed value”
of the bifurcation frequency) based on the former bifurcation
points that were successfully retrieved.
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FIG. 1. (Color online) Arnold tongues for the externally driven
rotator (6), with parameters (ag,a;) equal to (7.08116,2) in (a);
(9.85714,7.14286) in (b); and (16.46637,15) in (c). The frequency v
and amplitude B of the external driving are plotted on the abscissa
and ordinate axes, respectively. The tongues are n:1, with n in-
creasing from 1 to 9 as we move from right to left.

C. The n:1 synchronization regions

We obtained the first n:1 tongues for three combinations
of parameters (ag,a;) that, according to Eq. (5), yield the
same autonomous frequency for the rotator v,=1.0811:
(7.08116,2), (9.85714,7.14286), and (16.46637,15). Note that
dimensionless units are used for all variables throughout this
paper. The results are plotted in Fig. 1. The tongues with m
>1 are very narrow and the program fails to retrieve them
by the method of seeking the saddle-node bifurcations. Later
we will use other less accurate methods for the high-order
tongues. As often reported in the literature [8], the widest
tongues are those for m=1. For our system Eq. (6), as n
increases, the widths of the m=1 tongues decrease and the
tongues become closer to one another. A point of interest
here is that there are several Arnold tongues that are wide
enough to be seen, not only by seeking them in a tuned
experiment, but also through passive observations in the
presence of noise, e.g., the cardiovascular system [5,7,22].
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In our second parameter set, a; is bigger than in the first
set, and longer again in the third set compared to the second

one. Thus, the value of @ depends much more strongly on 6
as we move from (a) to (c) in Fig. 1, although the frequency
vy remains the same. The effect on the Arnold tongues is
immediately evident on comparing the three plots in Fig. 1:
the tongues become markedly wider, thereby favoring syn-
chronization. We may therefore conjecture that a strong de-
pendence of the instantaneous frequency on angle (for the
uncoupled rotator) may help high-order synchronization.

In order to check this conjecture more thoroughly, we fix
the value of the driving amplitude B to 1.5, and we compute
the widths of the tongues at B=1.5 for different values of the
parameters a, and a;. We swept a, from 2 to 30, and a; from
2 to (almost) ap. In order to compute the width of the
tongues, the code was modified, so that the two driving fre-
quencies at which the saddle-node bifurcations take place
were computed only for this value of B. Starting from o
=muwy/n, we trailed the bifurcation points first with small
precision, then with a greater one, recursively up to the de-
sired precision. We plot in Fig. 2 the widths of the tongues at
B=1.5 versus the autonomous frequency v, and the param-
eter a, [to which a is related through Eq. (5)]. In the figure
we see that, for the same autonomous frequency v, the
widths of the tongues dramatically increase with a;, confirm-

ing the conjecture that a strong dependence of § on 6 (for the
uncoupled rotator) favors synchronization. Regarding this
conjecture, it would be very interesting to add higher har-
monics to Eq. (1) and to study how the widths of the tongues
for the driven rotator change. Nevertheless, in this case, the
frequency v, of the isolated rotator is not an elementary
function, so it would perhaps be more convenient to calcu-
late this frequency numerically.

D. Use of the synchronization index

As mentioned above, the tongues with m > 1 are very nar-
row and the program fails to retrieve them by the method of
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FIG. 2. (Color online) Widths
of the Arnold tongues as functions
of parameters a; and vy: (a) 1:1;
(b) 1:2; (c) 1:3; and (d) 1:4. They
are expressed in units of the driv-
ing frequency v, at driving ampli-
tude B=1.5. Note the differences
in ordinate scale.

seeking the saddle-node bifurcations. In order to obtain the
synchronization regions in such cases, we have been obliged
to use other (albeit less accurate) approaches. The first one is
via a synchronization index: we generated data by numerical
integration of Eq. (6) with the fourth-order Runge-Kutta
method; and we analyzed them as though they were experi-
mental data, by computing their synchronization index. With
the definition of synchronization we mentioned at the begin-
ning, it is natural to quantify it by how close the following
index [14] is to zero

L

> (D=Dp,-2mm)|, (8

i=n+1

1

= 2am(L - n)

where L is the total number of crossings of =0 mod 27

with 6> 0, and ® is the phase of the external action when
the ith crossing occurs.

E. The n:m synchronization regions

To illustrate the n:m synchronization regions, we again
plot the driving frequency v on the horizontal axis, and the
coupling or driving amplitude B on the vertical axis. The
horizontal axis was divided into 5000 points, and the vertical
one into 30 points. For each of the 150 000 corresponding
pairs of points, Eq. (6) was integrated. The first 60 zero-
positive crossings were discarded to remove transients. The
maximum accepted value of the index H,,, (8) for a point to
be considered as belonging to the n:m Arnold tongue was
0.0005.

Figure 3 plots the results obtained for two of the param-
eter sets. We only plotted those tongues whose horizontal
widths were larger than 0.00026 for at least one value of the
coupling B (an arbitrary cutoff chosen by trial and error, in
order to plot neither too many nor too few tongues) [23]. We
can see in that figure the vast variety of synchronization re-
gions that the system yields. There are even some on this
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FIG. 3. (Color online) Detail of the synchronization regions in-
side a small interval. The parameters (ag,a;) are (a) (9.85714,
7.14286); (b) (7.08116,2). The tongues are, from left to right: (a)
5:1, 33:8, 41:10, 4:1, 39:10, 35:9, 31:8, 27:7, 23:6, 19:5, and 34:9;
(b) 5:1, 29:7, 33:8, 37:9, 41:10, 4:1, 39:10, 35:9, 31:8, and 27:7.

figure with m=10, the highest value of m that we trailed. As
we reduce the lower cutoff of the width criterion, many new
tongues arise in the plot. The effect of synchronization with
the external action can be inferred from the fact that these
tongues are not vertical lines, but curved.

Furthermore, comparison of Figs. 3(a) and 3(b) shows
that the tongues become closer to vertical straight lines for
smaller a;, implying that synchronization is more and more a
matter of fine tuning of the external driving frequency rather
than of the interaction of the rotator with the external action.
This phenomenon provides further confirmation of our hy-
pothesis that a strong dependence of instantaneous frequency

on angle (for the uncoupled rotator) helps high-order syn-
chronization.

F. Competition among the tongues

The curving of the high-order tongues in Fig. 3(a) can be
attributed to the occurrence of competition among tongues:
in this case the 4:1 tongue widens as the coupling increases
and “pushes” the high-order tongues. Our circle map £ is
always invertible, because Eq. (6) can be integrated with
reversed time. Therefore, lemma 1.5 in Ref. [10] says that
the Arnold tongues cannot overlap. That is the basis on

which we argue that there must be competition among the
tongues.
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We note here several signs of such competition. First, the
37:9 tongue appears in Fig. 3(b) but not in Fig. 3(a), because
it is narrower there. We can interpret this effect as 33:8 and
41:10 squeezing it for the set of parameters used in Fig. 3(a).

In the same way, the widths for 33:8 and 41:10 obtained
via the synchronization index in Fig. 3(a) are of the order of
10~* at B— 0, and of the order of 107> at B=3. Nevertheless,
the width of the synchronization region as B— 0 must tend
exactly to zero. As indicated above, the computation of Ar-
nold tongues via a synchronization index [using Eq. (8) in
our case] is less accurate. Because of this evident contradic-
tion between the obtained width of the tongue as B—0
(width bigger than zero) and the actual value of the width
(strictly zero), we need a more defined approach. The first try
was to obtain the bifurcation points with the first program
but it was impossible: although we set a high precision, we

failed to find any zeros for the function #,,,.

That is why we are introducing the third method of ob-
taining approximately Arnold tongues for tricky cases such
as this one: trailing the bifurcations in their “flexible” mean-
ing. Instead of considering that we are inside the tongue
when £, has a stable zero, we relax the condition and just
ask £, to have an “almost (half stable) zero,” defined as a
point where h,,, takes an absolute value smaller than a
threshold (set here to be 0.001). It means that, if we measure
the angle of the rotator at the times when the external action
has a maximum, this angle will stay for a long time around
this minimum (or rather, minimum in absolute value). What
happens afterwards depends on the behavior of 4,,. If &,
increases quickly (in absolute value) when we separate from
the minimum, the angle will slip and come back promptly to
the minimum (modulus 27). If &, is still very small when
we separate from the minimum, the angle will have a slow
drift when iterating 4, so, in practice, the system will be
regarded as synchronized, unless the measurements are very
precise.

The tongue 33:8 obtained this way is plotted in Fig. 4(a),
together with the 4:1 tongue obtained before. In Fig. 4(b) we
plotted the width of the 33:8 tongue as a function of the
driving amplitude B. Because of the “flexible” way of ob-
taining the tongue, its width tends to a value bigger than zero
as B—0. The explanation is simple: without any driving
(B=0) there is no interaction, so the only possibility of hav-
ing an apparent synchronization — not true synchronization,
as there is no interaction — is to tune the external frequency
to the value mv,/n. This frequency is the only point of the
Arnold tongue in the limit B— 0. The function £, is there
constantly equal to zero. If we make the external frequency
slightly different from mwv,/n, with B=0, the values returned
by the function #,,, will still be very small, so many of them
will be below the threshold; that is the reason why the ob-
tained width of the tongue in the limit B—0 is bigger than
zero. Of course, this “flexible” method is not completely
accurate, and it gives the apparent contradiction above. Nev-
ertheless, we are using this method only to obtain qualitative
conclusions, by comparing results all obtained with the same

method. So we believe that the conclusions remain valid.
As we can see from Fig. 4(b), the width of the 33:8

tongue is more or less constant for B near zero, and then it

starts dropping at around B=1.5. Looking at Fig. 4(a), we
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FIG. 4. (Color online) (a) Tongues 4:1 (right) and 33:8 (second
from the right) for parameters (ag,a;)=(9.85714,7.14286). For
clarity, the width of the 33:8 tongue in (a) is shown as larger than it
really is: this plot is just intended to show the location. (b) Width of
the 33:8 tongue, plotted as a function of the driving amplitude B.
The location of the 33:8 tongue in (a), and its width in (b), were
obtained by trailing the bifurcations in their “flexible” meaning,
using a threshold of 0.001.

may interpret B=1.5 as the point where the 4:1 tongue has
approached 33:8 enough to start squeezing it. The width of
33:8 reaches a minimum at B=2.5 and then it increases. In
Fig. 4(a), B=2.5 is more or less the point where 4:1 switches
from being concave (concave from outside) to convex, so it
is consistent with the fact that the width of 33:8 starts in-
creasing at this point: let us say that, before this point, 4:1
was “invading” 33:8; from this point, 33:8 “starts recovering
from 4:1’s invasion,” so 33:8 gains space (width) and 4:1
switches from being concave to be convex (of course, there
are, mathematically speaking, an infinite number of tongues
between 33:8 and 4:1, but 4:1 is the most dominant in the
area so it is the main influence). The cases discussed above
reveal clear signs of the effect of competition among
tongues; the existence of such competition was predicted at
the outset on strictly theoretical grounds.

IV. TIME VARIABILITY AND TRANSITIONS BETWEEN
DIFFERENT SYNCHRONIZATION EPOCHS

Transitions in time between states of different n:m syn-
chronization ratios have often been observed experimentally
[5,7,22,24]. We now consider in turn two mechanisms that
may give rise to such transitions in our system (6): (i) vari-
ability of the driving frequency and (ii) low-frequency noise.
The latter is mathematically equivalent to slow variations of
the autonomous frequency of the rotator. Both mechanisms
correspond to time variability, and they can coexist.
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FIG. 5. (Color online) An n:1 synchrogram for the forced rota-
tor while varying the driving frequency. Several n:1 synchroniza-
tion epochs can be observed. The straight line plots the instanta-
neous frequency of the external driving (right-hand ordinate axis).

A. Variability of the driving frequency

We again simulated the system (6), but modified such that
we replaced B sin(wr) with B sin[®(7)], and varied the in-

stantaneous frequency (1) linearly in time
. 1,
() =at+b; ()= Jar*+bt. )

The choice of a linear variation was arbitrary, in the interest
of clarity. With the parameters of Eq. (6) chosen to be
(ag,a,)=(9.85714,7.14286), B=4, we slowly swept ®(r)/
27 from 0.1 to 1.3 in a total time of 72 000. Figure 5 shows
n:1 synchronization epochs corresponding to the times when
the external instantaneous frequency is inside an Arnold
tongue. As n decreases, the synchronization epochs last
longer, and the transition regions widen. That is because, as
mentioned above, the Arnold tongues are then wider and
further separated. The n:2 epochs are also observed from the
synchrograms: Fig. 6 shows 5:2 and 3:2 synchronization ep-
ochs.

For a Josephson junction, transitions of this kind could be
induced by variation of the frequency of the harmonic com-
ponent of the current driving the system. Where we regard
Eq. (6) as a simple model for the heart driven by the respi-
ration, the transition mechanism would correspond to varia-
tion of the respiration rate. Although this rate can be con-
sciously controlled [25], people do not do so most of the
time, and so the small natural variations in respiration rate
can produce transitions in the synchronization ratio between
it and the heart.

B. Low-frequency noise

The second transition mechanism considered here arises
from the effect of the low-frequency noise that is often
present in physical, biological, and economic systems. For
instance, flicker noise [26] occurs in almost all electronic
devices. Another example is the cardiovascular system,
where there are known to be metabolic, neurogenic, and
myogenic [27] low-frequency oscillatory processes.
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FIG. 6. (Color online) Sections of an n:2 synchrogram for the
forced rotator while varying the driving frequency, illustrating a 5:2
synchronization epoch in (a) and a 3:2 epoch in (b). The straight
line plots the instantaneous frequency of the external driving (right-
hand ordinate axis).

We therefore added to our system an extra low-frequency
harmonic component, simulating Eq. (6) with (ag,a,)
=(9.85714,7.14286), B=4, w/27w=0.213, with a term
L, sin(w;f) added to the right-hand side, L;=0.1, and
w,/27=0.001. This value of w; may appear low compared
to some natural systems, but the results we will obtain re-
main valid for larger w; provided it is small compared with
the frequencies of the other processes. Without adding the
low frequency component, we would be inside the 5:1
tongue and the synchrogram would consist of five perfect
horizontal lines. As shown in Fig. 7(a), the corresponding
simulation exhibits transitions between 5:1 and 4:1. Note that
we have added a harmonic low-frequency component; with
low-frequency noise, the sequence of transitions will not be
predictable in the manner seen here. In Fig. 7(b) we see a 9:2
epoch inside the transition region between the two longest
epochs.

This second mechanism is mathematically equivalent to a
slow variation of the intrinsic frequency of the rotator. This
can be seen by considering the low-frequency component to
be absorbed inside a, yielding an a,, and therefore a v, that
slowly varies with time. In nature, however, the picture is
completely different, as the low-frequency noise comes from
outside the rotator.

C. Time variability and synchronization

Although we can still recognize synchronization epochs
from the synchrograms by sight, time variability—the origin
of the two transition mechanisms discussed above—means
that synchrograms no longer consist of perfect horizontal
lines. The test via a synchronization index, often used when
tackling real experimental data, must fail, even inside a small
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FIG. 7. (Color online) (a) Transitions between 5:1 and 4:1 syn-
chronization states, caused by the added low-frequency component.
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time window, unless we take a less strict threshold for the
index. Our result is in agreement with that obtained in Ref.
[22] by analysis of experimental data. In short, time variabil-
ity interferes with synchronization; at least for our system
and with the index (8) as a quantification of synchronization.
A more detailed and quantitative study of the influence of
time variability is in progress and will be reported elsewhere.

V. CONCLUSIONS

We have shown that the driven rotator Eq. (6) yields a
vast variety of Arnold tongues. Our results are applicable to
the several systems described by this equation, including the
overdamped pendulum and the overdamped Josephson junc-
tion. Because the synchronization regions can be relatively
wide, and because Eq. (1) is written in terms of continuous
variables, the equation may be useful in modeling the wide
range of high-order synchronization phenomena observed in
nature, such as in the cardiorespiratory interaction. Although
we investigate a specific system, and although the deep
mechanisms for synchronization are not revealed by our
studies in this paper, two of the results that we have obtained
are very interesting and likely to be useful in the quest for
those deep mechanisms: we showed that a strong depen-
dence of the instantaneous frequency on the angle helps
high-order synchronization; and we also identified and stud-
ied the phenomenon of competition among tongues. Finally,
we have discussed and explored two mechanisms of transi-
tion between different synchronization states.
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